Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(2): e24155, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293423

RESUMO

Objective: To analyze the efficacy of noninvasive prenatal genetic testing (NIPT) in detecting fetal sex chromosome abnormalities and copy number variation (CNV), compare the efficacy between NIPT and serological screening alone, and further analyze the fetal sex chromosome abnormalities and CNV differentiation in pregnant women of different ages, so as to provide a reference for the prevention and control of fetal birth defects. Methods: Clinical data from 22,692 pregnant women admitted to our hospital from January 2013 to December 2022 were retrospectively analyzed. All participants underwent serological screening and NIPT screening to compare fetal chromosomal abnormalities between the two screening modalities. 145 women whose fetus were diagnosed as sex chromosome abnormalities and 36 women whose fetus were diagnosed as CNV abnormalities based on NIPT screening were selected for prenatal diagnosis by amniocentesis or karyotyping. Taking prenatal diagnosis as the standard, the four-grid table method was used to detect the positive predictive value of NIPT screening for fetal sex chromosomal abnormalities and CNV. According to the age, pregnant women were divided into 18-30 years old (n = 9844), 31-35 years old (n = 7612), >35 years old (n = 5236), and then the detection rates of sexual fetal chromosomal abnormalities, CNV and total chromosomal abnormalities were compared in pregnant women. Results: Among the 22,692 pregnant women in this study, the high-risk proportion of serologic screening with 4.38% was higher than that of NIPT screening with 1.93% (P < 0.05). Among the 145 women with fetal sex chromosome abnormalities screened by NIPT, 122 cases of fetal sex chromosome abnormalities were diagnosed prenatally, including 45, X/47, XXX/47, XYY/47, XXY. The positive predictive values of NIPT screening were 25.00%, 58.82%, 85.71%, and 85.71%, respectively, with an overall predictive value of 44.26%. The positive predictive value of fetal sex chromosome abnormalities in NIPT screening was higher than that of serological screening (P < 0.05). Among the 36 pregnant women with fetal CNV, NIPT screening showed that CNVs≤10 Mb and CNVs>10 Mb were 33.33% and 66.67%, respectively. There were 12 cases of prenatal diagnosis of fetal CNV, among which the NIPT-screened positive predictive values of fetal copy number deletion, duplicate, deletion and duplicate were 50.00%, 57.14% and 100.00%, respectively, with an overall predictive value of 58.33%. The positive predictive value of CNV in NIPT screening was higher than that of serological screening without statistically significant difference (P > 0.05). The results of NIPT screening showed that the detection rate of fetal sex chromosome abnormalities and total abnormalities of pregnant women over 35 years of age was significantly higher than that of pregnant women aged 18-30 and 31-35 years (P < 0.05). Conclusion: NIPT screening could greatly improve the detection efficacy of fetal sex chromosome abnormalities, CNV and other chromosome abnormalities, and decline the false positive rate. However, the positive predictive value of NIPT screening was relatively low, and further prenatal testing and genetic counseling are still required. In addition, NIPT screening for fetal sex chromosome abnormalities, and the detection rate of total abnormalities in pregnant women older than 35 years old were increased significantly, and pregnancy at an advanced age may be one of the risk factors for fetal chromosomal abnormalities.

2.
J Phys Chem Lett ; 14(49): 11036-11042, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38047885

RESUMO

One of the most urgent and attractive topics in electrocatalytic water splitting is the exploration of high-performance and low-cost catalysts. Herein, we have proposed three fresh two-dimensional nanostructures (BSi5, BSi4, and BSi3) with inherent metallicity contributed by delocalized π electrons based on first-principles calculations. Their planar atoms arrangement, akin to graphene, is in favor of the availability of active atoms and H adsorption/deadsorption. Among them, the BSi5 monolayer shows the best HER activity, even superior to a commercial Pt catalyst. Moreover, its extraordinary HER activity can be maintained under high H coverage and large biaxial strain, mainly originating from the fact that B 2pz orbital electrons are responsible for the B-H interaction. Further analysis reveals that there appears to be a linear correlation between the magnitude of B 2pz DOS at the Fermi level and Gibbs free energy in both three proposed nanostructures and five hypothetical B-Si nanostructures. Our work represents a significant step forward toward the design of metal-free HER catalysts.

3.
Phys Chem Chem Phys ; 25(47): 32416-32420, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38010895

RESUMO

Two-dimensional magnetic materials have demonstrated favorable properties (e.g., large spin polarization and net magnetization) for the development of next-generation spintronic devices. The discovery of such materials and insight into their magnetic coupling mechanism has become a research focus. Here, on the basis of first-principles structural search calculations, we have identified a fresh FeCN monolayer consisting of edge-sharing Fe triangle sublattices and FeC3N2 rings, which integrates antiferromagnetism, semiconductivity, and planarity. Interestingly, it possesses a large magnetic anisotropy energy (MAE) of 614 µeV per Fe atom, a narrow band gap (Eg) of 0.47 eV, a large magnetic moment of 3.15 µB, and a proper Néel temperature (TN) of 97 K. The direct exchange between the nearest-neighbor Fe atoms in the triangle sublattice is mainly responsible for the AFM ordering. Its high structural stability, stemming from the collective contribution of covalent C-C and C-N bonds, ionic Fe-N bonds, and metallic Fe-Fe bonds, provides a strong feasibility for experimental synthesis.

4.
Phys Chem Chem Phys ; 25(32): 21521-21527, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37545317

RESUMO

Two-dimensional antiferromagnetic (AFM) materials with an intrinsic semiconductivity, a high critical temperature, and a sizable magnetic anisotropy energy (MAE) have attracted extensive attention because they show promise for high-performance spintronic nanodevices. Here, we have identified a new FeCN2 monolayer with a unique zigzag Fe chain through first-principles swarm structural search calculations. It is an AFM semiconductor with a direct band gap of 2.04 eV, a Néel temperature (TN) of 176 K, and a large in-plane MAE of 0.50 meV per Fe atom. More interestingly, the intrinsic antiferromagnetism, contributed by the strong magnetic coupling of neighbouring Fe ions, can be maintained under the external biaxial strains. A large cohesive energy and high dynamical stability favor synthesis and application. Therefore, these fascinating properties of the FeCN2 monolayer make it a promising nanoscale spintronic material.

5.
Front Mol Biosci ; 9: 1043713, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419932

RESUMO

Literature has well-established the importance of 3-O-sulfation of neuronal cell surface glycan heparan sulfate (HS) to its interaction with herpes simplex virus type 1 glycoprotein D (gD). Previous investigations of gD to its viral receptors HVEM and nectin-1 also highlighted the conformational dynamics of gD's N- and C-termini, necessary for viral membrane fusion. However, little is known on the structural interactions of gD with HS. Here, we present our findings on this interface from both the glycan and the protein perspective. We used C-terminal and N-terminal gD variants to probe the role of their respective regions in gD/HS binding. The N-terminal truncation mutants (with Δ1-22) demonstrate equivalent or stronger binding to heparin than their intact glycoproteins, indicating that the first 22 amino acids are disposable for heparin binding. Characterization of the conformational differences between C-terminal truncated mutants by sedimentation velocity analytical ultracentrifugation distinguished between the "open" and "closed" conformations of the glycoprotein D, highlighting the region's modulation of receptor binding. From the glycan perspective, we investigated gD interacting with heparin, heparan sulfate, and other de-sulfated and chemically defined oligosaccharides using surface plasmon resonance and glycan microarray. The results show a strong preference of gD for 6-O-sulfate, with 2-O-sulfation becoming more important in the presence of 6-O-S. Additionally, 3-O-sulfation shifted the chain length preference of gD from longer chain to mid-chain length, reaffirming the sulfation site's importance to the gD/HS interface. Our results shed new light on the molecular details of one of seven known protein-glycan interactions with 3-O-sulfated heparan sulfate.

6.
ACS Appl Mater Interfaces ; 14(6): 7836-7844, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35104411

RESUMO

Designing the earth's abundant and high-performance electrocatalysts, which possess high stability, excellent electrical conductivity, inherent active sites, and catalytic activity identical with Pt, is challenging but crucial for the hydrogen evolution reaction (HER). By first-principles structure search simulations, we identify a new two-dimensional (2D) MoPC material with the Janus structure as a promising catalyst. This novel 2D monolayer has superior stability and metallic conductivity. Especially, it exhibits a remarkable HER catalytic activity, where all of the constituent atoms, including Mo, P, and C, can uniformly act as active sites in view of the near-zero ΔGH* value. Its active site density counts up to 1.46 × 1015 site/cm2, larger than that of many reported materials and even comparable to Pt. The excellent HER catalytic activity can also be maintained at a very high H coverage with or without external strain. The MoPC monolayer can produce H2 spontaneously through the favorable Volmer-Heyrovsky pathway. The detailed catalytic mechanism behind the high HER activity has been also analyzed. Our work provides a feasible action for the experimental synthesis of excellent HER catalysts.

7.
Nanoscale ; 14(8): 3069-3077, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35137760

RESUMO

In the hydrogen evolution reaction (HER), it is essential to find a high-efficiency and nonprecious electrocatalyst comparable to Pt, which needs to have rich inherently active sites and good conductivity. By combining a global minimum structure search and first-principles calculations, a hitherto unknown 2D MoCN monolayer was found, which can be considered as a structure in which Mo atoms interact with the stable CN units through triple bonds. The resultant MoCN monolayer possesses superior thermodynamic, dynamic, thermal, and mechanical stabilities, as well as inherent metallicity. In particular, it can exhibit outstanding HER catalytic activity due to the presence of many active sites with near-zero ΔGH* values, whose density totals 1.80 × 1015 sites per cm2, even more than Pt. In addition, we also propose a series of other 2D monolayers containing stable CN units (i.e., MoC2N, MoCN2 and MoC2N2), all of which can uniformly show high stability and good HER catalytic activity. Applying strain can further effectively improve the activities of C-rich (MoC2N) and N-rich (MoCN2) monolayers, inducing considerably high HER catalytic performance. For the MoCN, MoC2N and MoCN2 monolayers, the most active sites are located at the Mo-C-N chain involved. All these fascinating findings can not only provide new excellent candidates but also new insights into the design of highly efficient and nonprecious HER electrocatalysts as an alternative to Pt in the near future.

8.
ACS Appl Mater Interfaces ; 13(48): 57422-57429, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34841848

RESUMO

The rational design of low-cost electrocatalysts with the desired performance is the core of the large-scale hydrogen production from water. Two-dimensional materials with high specific surface area and excellent electron properties are ideal candidates for electrocatalytic water splitting. Herein, we identify a hitherto unknown Mo2P3 monolayer with a Janus structure (i.e., out-of-plane asymmetry) through first-principle structure search calculations. Its inherent metallicity ensures good electrical conductivity. Notably, its catalytic activity is comparable to that of Pt and the density of active sites is up to 2.65 × 1015 site/cm2 owing to the Mo → P charge transfer enhancing the catalytic activity of P atoms and asymmetric structure exposing more active sites to the surface. The Mo2P3 monolayer can spontaneously produce hydrogen through the Volmer-Heyrovsky pathway. These excellent performances can be well maintained under strain. The coexistence of covalent and ionic bonds results in Mo2P3 having high stability. All these excellent properties make the Mo2P3 monolayer a promising candidate for electrocatalytic water splitting.

9.
J Phys Chem Lett ; 12(34): 8320-8327, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34428049

RESUMO

Taking into account the high conductivity and stability of carbon materials, such as graphene, and the strong polar covalent bonding character of main-group compounds, we explore potential 2D materials in the C-S binary system through first-principles structure search calculations. Herein, a hitherto unknown semiconducting C3S monolayer is identified, consisting of well-known n-biphenyl and S atom linked benzenes, exhibiting an obvious direction-dependent atomic arrangement. Thus, it exhibits anisotropic mechanical properties and carrier mobility. Its electron mobility reaches 2.14 × 104 cm2 V-1 s-1 in the b direction, along which n-biphenyl units are arranged, and is much higher than that in the well-used MoS2 monolayer and black phosphorus. Meanwhile, the C3S monolayer has high optical absorption coefficients (105 cm-1), high thermal and dynamical stabilities, and a moderate ability to split water. All these desirable properties make the C3S monolayer a promising candidate for applications in novel optoelectronic devices.

10.
J Phys Chem Lett ; 12(35): 8481-8488, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34450014

RESUMO

Phosphorene has offered an additional advantage for developing new optoelectronic devices due to its anisotropic and high carrier mobility. However, its instability in air causes a rapid degradation of the performance of the device. Thus, improving the stability of phosphorene while maintaining its original properties has become the key to the development of high-performance electronic devices. Herein, we propose that the formation of two-dimensional (2D) P-rich P-S compounds could achieve this goal. First-principles swarm-structural searches revealed two previously unkonwn P3S and P2S monolayers. The P3S monolayer, consisting of n-bicyclo-P6 units along the armchair direction, exhibits anisotropic and wide band gap characteristics. Interestingly, its carrier mobility reaches 1.11 × 104 cm2 V-1 s-1 and is much higher than in phosphorene. Its electronic band gap and optical absorption coefficients in the ultraviolet region reach 2.71 eV and 105 cm-1, respectively. Additionally, the P3S monolayer has a high structural stability and resistance to air oxidation.

11.
Phys Chem Chem Phys ; 23(11): 6455-6461, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33725035

RESUMO

The exploration of novel intermetallic compounds is of great significance for basic research and practical application. Considering the interesting and diverse attributes of Na and Au, their large electronegative difference, and the unresolved high-pressure Na-Au structures, first-principles swarm-intelligence structural search calculations are employed to explore the potential Na-Au compounds at high pressures. Besides reproducing the known Na-Au compounds, eleven new phases are disclosed, exhibiting several unprecedented Au atomic arrangements, such as rectangular ladder, layer formed by edge-sharing squares, hexahedron framework, and diamond-like skeleton, enriching the understanding of Au chemistry. Moreover, the coordination number of Au can be effectively modulated by controlling Na composition. In the Na-rich compounds (Na4Au, Na5Au, and Na6Au), Au shows a formal charge beyond -2, acting as a 6p-block element, originating from pressure-induced unusual Na 3s or 3p → Au 6p charge transfer. These compounds are metallic, but not superconductive. Moreover, the good agreement between the experimental XRD patterns and the simulated ones allows us to assign the predicted P6/mmm Na2Au and Fm3[combining macron]m Na3Au as the experimental structures at 59.6 GPa. Our work indicates that the modulation of pressure and chemical composition is a useful way to stabilize novel intermetallic compounds.

12.
Phys Chem Chem Phys ; 22(45): 26189-26199, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33196067

RESUMO

Two-dimensional Mo2C materials (1T and 2H phases) have emerged as promising electrocatalysts for the hydrogen evolution reaction (HER) due to their low cost, inherent metallicity, and high stability. Unfortunately, the catalytic activity of Mo2C is lower than that of Pt, and it needs to be substantially improved for practical applications. It is necessary and urgent to consider the effect of synergetic interactions among defects, functions, and strain on the HER activity. In this study, the geometric structures, electronic properties, and the HER activity of the Mo2C monolayer, with vacancy defects (i.e. Mo and C), oxygen functionalization, and strain, are studied by using first-principles calculations. According to our results, the combination of Mo vacancies, which can be obtained under C-rich conditions, and oxygen functionalization is the most effective way to improve the HER activity of 1T- and 2H-Mo2C. Considering the abundant active sites and optimal Gibbs free energy of hydrogen adsorption, the 1T phase we obtained shows excellent HER activity even at high H coverage and improves the utilization of active sites, for which the HER activity is comparable to that of Pt. This can be attributed to the fact that oxygen atoms gain more electrons from Mo2C, which weakens the strength of the O-H bond. Our work provides not only an opportunity to better understand the catalytic mechanism, but also a guide to achieving high HER activity of a Mo2C monolayer.

13.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32759318

RESUMO

A cascade of protein-protein interactions between four herpes simplex virus (HSV) glycoproteins (gD, gH/gL, and gB) drive fusion between the HSV envelope and host membrane, thereby allowing for virus entry and infection. Specifically, binding of gD to one of its receptors induces a conformational change that allows gD to bind to the regulatory complex gH/gL, which then activates the fusogen gB, resulting in membrane fusion. Using surface plasmon resonance and a panel of anti-gD monoclonal antibodies (MAbs) that sterically blocked the interaction, we previously showed that gH/gL binds directly to gD at sites distinct from the gD receptor binding site. Here, using an analogous strategy, we first evaluated the ability of a panel of uncharacterized anti-gH/gL MAbs to block binding to gD and/or inhibit fusion. We found that the epitopes of four gD-gH/gL-blocking MAbs were located within flexible regions of the gH N terminus and the gL C terminus, while the fifth was placed around gL residue 77. Taken together, our data localized the gD binding region on gH/gL to a group of gH and gL residues at the membrane distal region of the heterodimer. Surprisingly, a second set of MAbs did not block gD-gH/gL binding but instead stabilized the complex by altering the kinetic binding. However, despite this prolonged gD-gH/gL interaction, "stabilizing" MAbs also inhibited cell-cell fusion, suggesting a unique mechanism by which the fusion process is halted. Our findings support targeting the gD-gH/gL interaction to prevent fusion in both therapeutic and vaccine strategies against HSV.IMPORTANCE Key to developing a human HSV vaccine is an understanding of the virion glycoproteins involved in entry. HSV employs multiple glycoproteins for attachment, receptor interaction, and membrane fusion. Determining how these proteins function was resolved, in part, by structural biology coupled with immunological and biologic evidence. After binding, virion gD interacts with a receptor to activate the regulator gH/gL complex, triggering gB to drive fusion. Multiple questions remain, one being the physical location of each glycoprotein interaction site. Using protective antibodies with known epitopes, we documented the long-sought interaction between gD and gH/gL, detailing the region on gD important to create the gD-gH/gL triplex. Now, we have identified the corresponding gD contact sites on gH/gL. Concurrently we discovered a novel mechanism whereby gH/gL antibodies stabilize the complex and inhibit fusion progression. Our model for the gD-gH/gL triplex provides a new framework for studying fusion, which identifies targets for vaccine development.


Assuntos
Herpesvirus Humano 1/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Antivirais/química , Fusão de Membrana , Células Sf9 , Spodoptera , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas do Envelope Viral/genética
14.
Mol Ther Methods Clin Dev ; 16: 145-154, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32042851

RESUMO

Effective oncolytic virotherapy may require systemic delivery, tumor targeting, and resistance to virus-neutralizing (VN) antibodies. Since herpes simplex virus (HSV) glycoprotein D (gD) is the viral attachment/entry protein and predominant VN target, we examined the impact of gD retargeting alone and in combination with alterations in dominant VN epitopes on virus susceptibility to VN antibodies. We compared the binding of a panel of anti-gD monoclonal antibodies (mAbs) that mimic antibody specificities in human HSV-immune sera to the purified ectodomains of wild-type and retargeted gD, revealing the retention of two prominent epitopes. Substitution of a key residue in each epitope, separately and together, revealed that both substitutions (1) blocked retargeted gD recognition by mAbs to the respective epitopes, and, in combination, caused a global reduction in mAb binding; (2) protected against fusion inhibition by VN mAbs reactive with each epitope in virus-free cell-cell fusion assays; and (3) increased the resistance of retargeted HSV-1 to these VN mAbs. Although the combined modifications of retargeted gD allowed bona fide retargeting, incorporation into virions was partially compromised. Our results indicate that stacking of epitope mutations can additively block retargeted gD recognition by VN antibodies but also that improvements in gD incorporation into virus particles may be required.

15.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31092568

RESUMO

Herpes simplex virus (HSV) requires fusion between the viral envelope and host membrane. Four glycoproteins, gD, gH/gL, and gB, are essential for this process. To initiate fusion, gD binds its receptor and undergoes a conformational change that hypothetically leads to activation of gH/gL, which in turn triggers the fusion protein gB to undergo rearrangements leading to membrane fusion. Our model predicts that gD must interact with both its receptor and gH/gL to promote fusion. In support of this, we have shown that gD is structurally divided into two "faces": one for the binding receptor and the other for its presumed interaction with gH/gL. However, until now, we have been unable to demonstrate a direct interaction between gD and gH/gL. Here, we used surface plasmon resonance to show that the ectodomain of gH/gL binds directly to the ectodomain of gD when (i) gD is captured by certain anti-gD monoclonal antibodies (MAbs) that are bound to a biosensor chip, (ii) gD is bound to either one of its receptors on a chip, and (iii) gD is covalently bound to the chip surface. To localize the gH/gL binding site on gD, we used multiple anti-gD MAbs from six antigenic communities and determined which ones interfered with this interaction. MAbs from three separate communities block gD-gH/gL binding, and their epitopes encircle a geographical area on gD that we propose comprises the gH/gL binding domain. Together, our results show that gH/gL interacts directly with gD, supporting a role for this step in HSV entry.IMPORTANCE HSV entry is a multistep process that requires the actions of four glycoproteins, gD, gH/gL, and gB. Our current model predicts that gD must interact with both its receptor and gH/gL to promote viral entry. Although we know a great deal about how gD binds its receptors, until now we have been unable to demonstrate a direct interaction between gD and gH/gL. Here, we used a highly sensitive surface plasmon resonance technique to clearly demonstrate that gD and gH/gL interact. Furthermore, using multiple MAbs with defined epitopes, we have delineated a domain on gD that is independent of that used for receptor binding and which likely represents the gH/gL interaction domain. Targeting this interaction to prevent fusion may enhance both therapeutic and vaccine strategies.


Assuntos
Herpesvirus Humano 1/fisiologia , Mapas de Interação de Proteínas , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Sítios de Ligação , Ligação Proteica , Ressonância de Plasmônio de Superfície
16.
J Virol ; 92(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30282715

RESUMO

HSV virus-cell and cell-cell fusion requires multiple interactions between four essential virion envelope glycoproteins, gD, gB, gH, and gL, and between gD and a cellular receptor, nectin-1 or herpesvirus entry mediator (HVEM). Current models suggest that binding of gD to receptors induces a conformational change that leads to activation of gH/gL and consequent triggering of the prefusion form of gB to promote membrane fusion. Since protein-protein interactions guide each step of fusion, identifying the sites of interaction may lead to the identification of potential therapeutic targets that block this process. We have previously identified two "faces" on gD: one for receptor binding and the other for its presumed interaction with gH/gL. We previously separated the gD monoclonal antibodies (MAbs) into five competition communities. MAbs from two communities (MC2 and MC5) neutralize virus infection and block cell-cell fusion but do not block receptor binding, suggesting that they block binding of gD to gH/gL. Using a combination of classical epitope mapping of gD mutants with fusion and entry assays, we identified two residues (R67 and P54) on the presumed gH/gL interaction face of gD that allowed for fusion and viral entry but were no longer sensitive to inhibition by MC2 or MC5, yet both were blocked by other MAbs. As neutralizing antibodies interfere with essential steps in the fusion pathway, our studies strongly suggest that these key residues block the interaction of gD with gH/gL.IMPORTANCE Virus entry and cell-cell fusion mediated by HSV require gD, gH/gL, gB, and a gD receptor. Neutralizing antibodies directed against any of these proteins bind to residues within key functional sites and interfere with an essential step in the fusion pathway. Thus, the epitopes of these MAbs identify critical, functional sites on their target proteins. Unlike many anti-gD MAbs, which block binding of gD to a cellular receptor, two, MC2 and MC5, block a separate, downstream step in the fusion pathway which is presumed to be the activation of the modulator of fusion, gH/gL. By combining epitope mapping of a panel of gD mutants with fusion and virus entry assays, we have identified residues that are critical in the binding and function of these two MAbs. This new information helps to define the site of the presumptive interaction of gD with gH/gL, of which we have limited knowledge.


Assuntos
Anticorpos Neutralizantes/farmacologia , Simplexvirus/fisiologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais/farmacologia , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular , Chlorocebus aethiops , Mapeamento de Epitopos , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Células Vero , Proteínas do Envelope Viral/genética , Internalização do Vírus/efeitos dos fármacos
17.
PLoS Pathog ; 13(6): e1006430, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28614387

RESUMO

While HSV-2 typically causes genital lesions, HSV-1 is increasingly the cause of genital herpes. In addition, neonatal HSV infections are associated with a high rate of mortality and HSV-2 may increase the risk for HIV or Zika infections, reinforcing the need to develop an effective vaccine. In the GSK Herpevac trial, doubly sero-negative women were vaccinated with a truncated form of gD2 [gD2(284t)], then examined for anti-gD serum titers and clinical manifestations of disease. Surprisingly, few vaccinees were protected against genital HSV-2 but 86% were protected from genital HSV-1. These observations suggest that subtle differences in gD structure might influence a protective response. To better understand the antigenic structure of gD and how it impacts a protective response, we previously utilized several key anti-gD monoclonal antibodies (mAbs) to dissect epitopes in vaccinee sera. Several correlations were observed but the methodology limited the number of sera and mAbs that could be tested. Here, we used array-based surface plasmon imaging (SPRi) to simultaneously measure a larger number of protein-protein interactions. We carried out cross-competition or "epitope binning" studies with 39 anti-gD mAbs and four soluble forms of gD, including a form [gD2(285t)] that resembles the Herpevac antigen. The results from these experiments allowed us to organize the mAbs into four epitope communities. Notably, relationships within and between communities differed depending on the form of gD, and off-rate analysis suggested differences in mAb-gD avidity depending on the gD serotype and length. Together, these results show that gD1 and gD2 differ in their structural topography. Consistent with the Herpevac results, several mAbs that bind both gD1 and gD2 neutralize only HSV-1. Thus, this technology provides new insights into the antigenic structure of gD and provides a rationale as to how vaccination with a gD2 subunit may lead to protection from HSV-1 infection.


Assuntos
Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 2/imunologia , Ressonância de Plasmônio de Superfície/métodos , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/química , Antígenos Virais/imunologia , Herpesvirus Humano 1/química , Herpesvirus Humano 2/química , Vacinas contra Herpesvirus/imunologia , Ensaios de Triagem em Larga Escala , Humanos , Proteínas do Envelope Viral/química
18.
J Virol ; 89(18): 9213-31, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26109729

RESUMO

UNLABELLED: Herpes simplex virus 1 (HSV-1) and HSV-2 infect many humans and establish a latent infection in sensory ganglia. Although some infected people suffer periodic recurrences, others do not. Infected people mount both cell-mediated and humoral responses, including the production of virus-neutralizing antibodies (Abs) directed at viral entry glycoproteins. Previously, we examined IgGs from 10 HSV-seropositive individuals; all neutralized virus and were directed primarily against gD or gD+gB. Here, we expand our studies and examine 32 additional sera from HSV-infected individuals, 23 of whom had no recurrent disease. Using an Octet RED96 system, we screened all 32 serum samples directly for both glycoprotein binding and competition with known neutralizing anti-gD and -gB monoclonal Abs (MAbs). On average, the recurrent cohort exhibited higher binding to gD and gB and had higher neutralization titers. There were similar trends in the blocking of MAbs to critical gD and gB epitopes. When we depleted six sera of Abs to specific glycoproteins, we found different types of responses, but always directed primarily at gD and/or gB. Interestingly, in one dual-infected person, the neutralizing response to HSV-2 was due to gD2 and gB2, whereas HSV-1 neutralization was due to gD1 and gB1. In another case, virus neutralization was HSV-1 specific, with the Ab response directed entirely at gB1, despite this serum blocking type-common anti-gD and -gB neutralizing MAbs. These data are pertinent in the design of future HSV vaccines since they demonstrate the importance of both serotypes of gD and gB as immunogens. IMPORTANCE: We previously showed that people infected with HSV produce neutralizing Abs directed against gD or a combination of gD+gB (and in one case, gD+gB+gC, which was HSV-1 specific). In this more extensive study, we again found that gD or gD+gB can account for the virus neutralizing response and critical epitopes of one or both of these proteins are represented in sera of naturally infected humans. However, we also found that some individuals produced a strong response against gB alone. In addition, we identified type-specific contributions to HSV neutralization from both gD and gB. Contributions from the other entry glycoproteins, gC and gH/gL, were minimal and limited to HSV-1 neutralization. Knowing the variations in how humans see and mount a response to HSV will be important to vaccine development.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos/imunologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 2/imunologia , Imunoglobulina G/química , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Especificidade de Anticorpos , Chlorocebus aethiops , Reações Cruzadas , Epitopos/química , Herpesvirus Humano 1/química , Herpesvirus Humano 2/química , Humanos , Imunoglobulina G/imunologia , Camundongos , Células Vero
19.
J Virol ; 88(21): 12612-22, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25142599

RESUMO

UNLABELLED: Relatively little is known about the extent of the polyclonal antibody (PAb) repertoire elicited by herpes simplex virus (HSV) glycoproteins during natural infection and how these antibodies affect virus neutralization. Here, we examined IgGs from 10 HSV-seropositive individuals originally classified as high or low virus shedders. All PAbs neutralized virus to various extents. We determined which HSV entry glycoproteins these PAbs were directed against: glycoproteins gB, gD, and gC were recognized by all sera, but fewer sera reacted against gH/gL. We previously characterized multiple mouse monoclonal antibodies (MAbs) and mapped those with high neutralizing activity to the crystal structures of gD, gB, and gH/gL. We used a biosensor competition assay to determine whether there were corresponding human antibodies to those epitopes. All 10 samples had neutralizing IgGs to gD epitopes, but there were variations in which epitopes were seen in individual samples. Surprisingly, only three samples contained neutralizing IgGs to gB epitopes. To further dissect the nature of these IgGs, we developed a method to select out gD- and gB-specific IgGs from four representative sera via affinity chromatography, allowing us to determine the contribution of antibodies against each glycoprotein to the overall neutralization capacity of the serum. In two cases, gD and gB accounted for all of the neutralizing activity against HSV-2, with a modest amount of HSV-1 neutralization directed against gC. In the other two samples, the dominant response was to gD. IMPORTANCE: Antibodies targeting functional epitopes on HSV entry glycoproteins mediate HSV neutralization. Virus-neutralizing epitopes have been defined and characterized using murine monoclonal antibodies. However, it is largely unknown whether these same epitopes are targeted by the humoral response to HSV infection in humans. We have shown that during natural infection, virus-neutralizing antibodies are principally directed against gD, gB, and, to a lesser extent, gC. While several key HSV-neutralizing epitopes within gD and gB are commonly targeted by human serum IgG, others fail to induce consistent responses. These data are particularly relevant to the design of future HSV vaccines.


Assuntos
Anticorpos Antivirais/sangue , Glicoproteínas/imunologia , Herpes Simples/imunologia , Simplexvirus/imunologia , Proteínas Estruturais Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Formação de Anticorpos , Humanos , Imunoglobulina G/sangue , Camundongos
20.
J Virol ; 88(14): 7786-95, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24789783

RESUMO

The results of a clinical trial of a subunit vaccine against genital herpes were recently reported (R. B. Belshe, P. A. Leone, D. I. Bernstein, A. Wald, M. J. Levin, J. T. Stapleton, I. Gorfinkel, R. L. Morrow, M. G. Ewell, A. Stokes-Riner, G. Dubin, T. C. Heineman, J. M. Schulte, C. D. Deal, N. Engl. J. Med. 366: 34-43, 2012, doi:10.1056/NEJMoa1103151). The vaccine consisted of a soluble form of herpes simplex virus 2 (HSV-2) glycoprotein D (gD2) with adjuvant. The goal of the current study was to examine the composition of the humoral response to gD2 within a selected subset of vaccinated individuals. Serum samples from 30 vaccine recipients were selected based upon relative enzyme-linked immunosorbent assay (ELISA) titers against gD2; 10 samples had high titers, 10 had medium titers, and the remaining 10 had low ELISA titers. We employed a novel, biosensor-based monoclonal antibody (MAb)-blocking assay to determine whether gD2 vaccination elicited IgG responses against epitopes overlapping those of well-characterized MAbs. Importantly, IgGs from the majority of gD2-immunized subjects competed for gD binding with four antigenically distinct virus-neutralizing MAbs (MC2, MC5, MC23, and DL11). Screening of patient IgGs against overlapping peptides spanning the gD2 ectodomain revealed that about half of the samples contained antibodies against linear epitopes within the N and C termini of gD2. We found that the virus-neutralizing abilities of the 10 most potent samples correlated with overall gD-binding activity and to an even greater extent with the combined content of IgGs against the epitopes of MAbs MC2, MC5, MC23, and DL11. This suggests that optimal virus-neutralizing activity is achieved by strong and balanced responses to the four major discontinuous neutralizing epitopes of gD2. Importance: Several herpes simplex virus 2 (HSV-2) subunit vaccine studies have been conducted in human subjects using a recombinant form of HSV-2 glycoprotein D (gD2). Although several distinct, well-characterized virus-neutralizing epitopes on gD2 are targeted by murine monoclonal antibodies, it is not known whether the same epitopes are targeted by the humoral response to gD2 in humans. We have developed a novel, biosensor-based competition assay to directly address this important question. Using this approach, we identified epitopes that elicit strong humoral responses in humans, as well as other epitopes that elicit much weaker responses. These data provide new insight into the human response to known neutralizing gD2 epitopes and reveal characteristics of this response that may guide future vaccine development.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Epitopos/imunologia , Herpesvirus Humano 2/imunologia , Vacinas contra Herpesvirus/imunologia , Imunoglobulina G/sangue , Proteínas do Envelope Viral/imunologia , Anticorpos Antivirais/imunologia , Ensaio de Imunoadsorção Enzimática , Vacinas contra Herpesvirus/administração & dosagem , Humanos , Imunoglobulina G/imunologia , Testes de Neutralização , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...